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Strategic:

Mission Dependency Index Prediction
Modeling
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U.S.ARMY

SMS (BUILDER) Data

 The SMS database contains
extensive information about
various buildings across US
Army:
— Detailed Component Inventory

— Inspection / Condition
Assessment

— Rolled up Facility Condition

“Risk Likelihood”




®

Pairing SMS with Risk Consequence

Risk Likelihood and Risk Consequence

ri-0.00 [ | 9l 100.00 Risk Likelihood and Risk Consequence
60.00
S = - ‘ ri- .00 [ | "9l 100.00
e of e ¢ 60.00
o o°° 100
20 o i . P 2 " ¢
o c -
' 9 e &° .
v & ¢ = ® ° ¢
& 2 0 ' {
g_ (=]
3 5 g :
= w o/
S = o ¢
x %
& 60
60 80 100
Risk Likelihood

* 1-N prioritization
3 2 w o 159 » More useful prioritization
UKL RElRLae schemes for Sustainment
work generation

T
<N 3

@ Sustainment Management Systems

SysTeW




2 What is Mission Dependency Index (I\/IDI)’? &

* A measure from 0 to 100 of criticality
of buildings to overall mission

 Built on two other values:

— Interruptability: How fast would the
mission be impacted if the asset’s

operations were interrupted?
— Replicability: How difficult would it be
to relocate the asset’s mission

capacities?

3 Sustainment Management Systems




U.S.ARMY

MISSION DEPENDENCY INDEX )

awesion 1 INTERRUPTABILITY

How fast would the mission be impacted if the asset's operations were interrupted?

I IMMEDIATE BRIEF SHORT PROLONGED

< 15 minutes < 24 hours < 7days > 7 days

MD
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~  How can we harness this information”? &
* [t can be difficult to capture the
behavior of multi-feature data
without some sort of trend
modeling

 Even some of the more complex
models might not grasp enough
information to make reasonable
estimates on new data

* Need for something stronger




U.S.ARMY

Machine Learning

An extremely powerful tool in the
realm of data science and
mathematics

These models are far deeper than
standard data models

Complexity of models can be
decided based on individual
problems

? Sustainment Management Systems




Neural Networks

U.S.ARMY

* A specific machine learning
model that works for almost
any problem type

 Based on the structure of the
human brain

« Uses linear algebra and
calculus to actually learn how
to best understand data and
make predictions on new data

? Sustainment Management Systems
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Data Treatment L)

* This particular data set is from a pilot
set of two Army Installations

* Three primary input data types in

utilized:
— Numeric
« Building Value, Size, Age, ... 23 4%
— Labels/Classification JEEE
» Structure Type, Authority/Accountability, ... Category Gro »-’ |
— Word Data = "-_" *
 Unit Name, CODE info, ... F"““”“"""’”"”""lﬁ_l'

Category Code (CATCODE) J

— Feature Selection




Data Treatment

U.S.ARMY

 Word Embedding

— Unit names and CATCODE
labels form large word data
frames

— These are not easy for
models to read directly

— Utilize neural networks to
create vector
representations of words
within a “context space”

? Sustainment Management Systems
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U.S.ARMY

SENSOR.
DAELLING

Data Treatment
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Data Treatment

U.S.ARMY
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U.S.ARMY

Data Treatment

— Interruptabillity

— Replicability ﬂ
These are scaled by severity
combined to output an MDI e INTERRUPTABILITY
IMMEI_DIATE BRIEF SHORT PROLONGED
Value < 15 minutes < 24 hours < 7days > 7 days
5 IMPOSSIBLE - 76 o4

This turns our problem of
predicting MDI into a
classification task

% EXTREMELY
28 DIFFICULT

80 68 o6

REPLICABILITY

Ques

:% DIFFICULT

72 60 48

: POSSIBLE 70 04 52 -
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The Models L,

* [nterruptability and Replicability
have distinct meanings and

U.S.ARMY

] awsion1 INTERRUPTABILITY
How fast would the mission be impacted if the asset’s operations were interrupted?
have different degrees of MD| Py =i
< 15 minutes < 24 hours < 7days > 7 days

impact on MDI

» Using two separate models
allows for important information
from the input data to be
learned in unique ways that
best suit the values individually

®2 EXTREMELY
2§ DIFFICULT - 80 68 o6

gf DIFFICULT - 72 60 48
2 POSSIBLE 76 64 52 -

Question 2

REPLICABILITY
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Replicability Model i |

« Hidden Layer Sizes: el

Actual
0 1 2 3

— 64,256,256,256,32, 8
* Activation function:
— Rectified Linear Unit -

« L2 Regularization Strength:
— 0.0001 )

e Solver:
— Adam

o Accu racy: 72_8% 316 183 122 37

@ Sustainment Management Systems
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U.S.ARMY

* Hidden Layer Sizes: i
— 64,256,256,256,32,16
Activation function:

— Rectified Linear Unit .

L2 Regularization Strength:

— 0.0001

Solver:
— Adam

Accuracy: 74.0%

Interruptability Model

290
197
129

42

283 196 129 =0

@ Sustainment Management Systems




Summary

U.S.ARMY




Performance

U.S.ARMY

« MDI RMSE: 13.20
 MDI MAE: 6.72

* Neural networks and other
machine learning models
have massive potential in
uncovering new information
from existing data

MISSION DEPENDENCY INDEX
I INTERRUPTABILITY

BRIEF
IMPOSSIBLE

- ;i EXTREMELY
5 < 27 DIFFICULT

PROLONGED
> 7 days

IMMEDIATE SHORT

M =
O

if DIFFICULT
0)

z POSSIBLE

REPLICABILITY
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Tactical:

Optimizing Maintenance Policies with
Reinforcement Learning
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Previous SMS Research

* Previously, Reinforcement Learning (Proximal Policy
Optimization) was used to train an agent to make
Maintenance Decisions for a single Building

* The Maintenance Actions were high scope

Building Component Building Maintenance
Data Analytics

‘ o

! 3 Sustainment Management Systems
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Challenges:
* Previous Method had very general building

maintenance actions: p—

— Do Nothing T e

— Replace P PP S
— Full Maintenance ° K e
— Reduced Maintenance T N
— Minimum Maintenance e e

« Markov Environment was Deterministic
* Infinite Markov States

? Sustainment Management Systems




U.s.ARMY G Oa I S :

* Create a discrete Markov environment

* Optimize a component-specific policy

» Better reflect mission/inter-dependencies
of components in environment

« Scalable Environment with Multiple
Buildings

? Sustainment Management Systems




Multi Agent Framework:

Component
Maintenance Decisions

U.S.ARMY

Component States
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Previous Research

* Previously, SMS researched a creation of Markov
Transition Matrices for components

« Each condition is pooled into a discrete state:
: 100 - 95 Cl

|
—

> transition_matrix

[.1] [,2] [.3] [,4] [.5] [.6] [.71 [,8] [,9]

2 - 95 85 CI [1.] 0.05810147 0.4238953 0.4296236 0.04909984 0.02045827 0.01063830 0.004091653 0.002454992 0.001636661

— - [2.] 0.00000000 0.3333333 0.4333333 0.155555356 0.04444444 0.02222222 0.0111111311 0. 000000000 O.000000000
" [3.] 0.00000000 0.0000000 0.4843750 0.21354167 0.16666667 0.08854167 0.015623000 0.026041667 0.005208333

[4.] 0.00000000 0.0000000 0.0000000 0.72058824 0.1323529%94 0.08823529 0.029411765 0.029411765 0.000000000

[5.] 0.00000000 0.0000000 0.0000000 0.0Q0000000 0.535102041 0.22448980 0.081632653 0.081632653 0.061224490

—_— 3 " 85 - 75 ‘ I [6,]1 0.00000000 0.0000000 0.0000000 O.00000000 0.00000000 0.45454545 0.181818182 0.363636364 0.000000000
" [7.] 0.00000000 0.0000000 0.0000000 Q.00000000 O.00000000 O.0000000C O.000000000 O.000000000 1.000000000

[8,] 0.00000000 0.0000000 0.0000000 Q.00000000 O.00000000 O.0000000C O.000000000 O.000000000 O.000000000

[9.] 0.00000000 0.0000000 0.0000000 0.00000000 O.00000000 O.0000000C O.000000000 O0.000000000 1.000000000

— etc ...

* Transition Matrix gives the probability of observing a
component in state n given its in state m

@ Sustainment Management Systems
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Component States

U.S.ARMY

* We consider 8-9 to be Failed States
* More failed states are added to embed state memory
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Component Actions

U.S.ARMY

* Actions When Healthy :
— Do Nothing ﬂ%\a

— Replace /\ /\ A’f“,

— *Maintain
* Actions When Failed Healthy
— Repair b /@\
— Replace g o [ o P




Previous External Research:

* There is plenty of research for
using Multi Agent
Reinforcement Learning in
Manufacturing Maintenance %22

* Mission Production Networks
apply “Manufacturing” P
pipelines to components “pe |

) “HOW mUCh do Com ponents [c};’mallc]Ccnua]l;cd mn;muctnistnbut;d
help each other / the mission”

U.S.ARMY

Marcelo Luis Ruiz Rodriguez, Sylvain Kubler
Multi-agent deep reinforcement learning based Predictive Maintenance on parallel machines,
Robotics and Computer-Integrated Manufacturing, Volume 78, 2022




Mission Production Network:

U.S.ARMY

* These networks can be Complex, Facility,
System or Component level
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U.S.ARMY

Dynamic Programming:

* We can use the Bellman Equation to find an optimal
policy for a single component

:Gf | St:S]
Rip1 +7vGs1 | Si=s]

:Rf+1 FD "‘r'Ua-r(StH} | StZS]

=3 n(als) Y p(s' rl5.0) 7+ yvn(s)]




Single Component Optimization: sl

« Using dummy data, we optimized repair/replacement of a
single component using dummy data

Value Iteration

0.0
2.5
5.0
e 15

=

o
L 100

12.5

15.0

17.5

0.0 2.5 5.0 7.5 10.0 125
State
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. , _ -
Dimensionality Issue: sl

 |If we expand this to a whole building with n components,
we will have
— 14”n states
— 2™n actions

* We can use Deep Reinforcement Learning to help
restructure the states through partial observations

* Two main methods will be examined:

— Deep Q Learning
— Actor Critic Methods

? Sustainment Management Systems




U.S.ARMY

Deep Q Learning:

Deep Q learning tries to estimate the value of taking an
action in a state using Neural Networks

&
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Actor / Critic:

U.S.ARMY

* One network estimates the value of a state
* The other determines the policy

Experience Tuple
Update the policy parameters 8

by applying stochastic gradient
ascent on gdfﬁ(gj

By By Ty St
‘[ng Ty & l} { Environment J

1
J

[Sample Memaory

—

Update the critic's parameters &,
by applying SGD on

VF

i

 Actor Critic methods use two neural networks.




U.s.ARMY FUture ResearCh:

* Maintenance Actions
* Repair/Replace Timeouts (a daily timestep)

* Using Sensors and Physics Informed Deep Learning to
build more robust digital twins for environments.

———————————————————————————————————————————————————————————————————————
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Operational:

Automated Condition Assessment from
Operational Performance Data
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U.S.ARMY

Project Overview

Location
— Tyndall Air Force Base

— USACE Construction Engineering Research
Laboratory (Champaign, IL)

Objective: Leverage operational technology (OT)
performance data to automate condition
assessment of HVAC equipment

Products

— Engineering analytics for automating the creation of
SMS condition assessment records and resulting
condition rating scores using equipment sensor
performance data

— Demonstration of resulting lifecycle condition
forecasts based on automated assessments, work
recommendations, and future inspection schedules

} Sustainment Management Systems




Enhanced SMS Process Using Sensors &=

U.S. ARMY
Physical data SMS condition Generated from
Traditional collection of Inspeptors prediction standards and
Methods building physically algorithms only policy
components getting eyes on adjusted by thresholds for

inventory physical condition and
SIS inspections remaining Long-term
Process .\ service life version of Work
.\ Planning

Sensor data creating

inspection points  Supplemental algorithms
OR .
- Creating inspection ¢ SMngOdel creating i
requirements /flags S iti Inspection Heveioping sensor
q g tanc_ja!one condltlgn required’ work specific trends to
prediction for certain forecast instead of
Sensors standard SMS curves

@ Sustainment Management Systems




Methodology

U.S.ARMY

Pre-
processing « Empirical Mode Decomposition (EMD)

ML / Neural - Temperature prediction neural network
Network » Unsupervised Anomaly Detection
processing « Runtime frequency analysis

Metric
correlation to
condition

« Deviation Metric development and correlation
» Unsupervised Condition Assessment




U.S.ARMY

Pre-Processing
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®

Empirical Mode
Decomposition (EMD)
breaks a signal down into
oscillatory components, called
Intrinsic Mode Functions
(IMFs)

Complete Ensemble EMD
(CEEMD) first adds a small
amount of noise to the data
before using an EMD
algorithm. This helps separate
the information of different
frequencies into distinct IMFs,
however it has the downside
of adding noise to the signal.




7 Turning IMFs into Neural Network Inputs ~ E=

* The final IMF (with the lowest frequency information) is called the “Residual”

* Starting with the Residual, we add on the IMFs one by one. At each step, our
sum is a time series input.

* Each step is a neural network input

: |
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: : 5 ot
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U.S.ARMY

i
AN
;.;.

al

N
N
2
@

O
tput layer

hidden layer 1 hidden layer 2

)

input layer

Temperature prediction neural network

Aeredsmosthed Delta Temp

Develop model that can use sensor
data to predict temperature

We define the Delta Temperature as
the difference between the Actual
Temperature and the Room
Temperature.

We take a rolling mean over the Delta
Temperature and set it to 0 whenever
the system is off.

Unsupervised Anomaly Detection

225 - = Value (°F) L]

200
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Timestamp

Convolutional Neural Network with
Spectral Residuals (CNN-SR)
Long Short-Term Memory Neural
Network (LSTM) detection.

ML / Neural Network Processing

[l

Runtime frequency analysis

Room 2001 - Heating (%) Runtime Room 2001 - Cooling (%) Runtime

“How much time does the machine
need in order to change the room
temperature to its thermostat
setting?”

“‘How much time does a machine
need to in order to complete its
task?”




n [ ] [ ] |
Metric Correlation to Condition @
US.ARMY
Deviation Metric development and correlation Unsupervised Condition Assessment
Condition Steps:
Room | deviation |alpha=2| alpha =3 | alpha = 4 |alpha = 5| 1. Input healthy and unknown sensor data into
1 449 82 91 96 98 autoencoder neural network
2 524 77 87 93 96 2. Use neural network output to create survival
co 3 600 7 81 88 92 o "’ functions for the healthy and unknown sensors
£ £ g 5il5 0 50 5l ol . 3. Compute a Condition Index for the unknown sensor
* 5 S50 67 Lt 84 89 using the survival functions
6 679 65 74 81 87
7 761 58 66 73 78
8 840 51 57 62 67
- 9 938 44 46 48 50
oevition = 10 994 40 40 40 40

3.
=) Condition Index = 76.38

Autoencoder

oo Aﬁ‘s‘\

» Deviation of a newer component would be
closer to 0 and a Weibull distribution can be

used to forecast deviation

* Terminal deviation functions similar to the - The algorithm does not need inspection data, only
“design life” concept sensor data.

* Requires training the model with new «  Work for assessing long and short-term equipment
equipment health.

« Can assess the global and local condition index for a
piece of equipment.

@ Sustainment Management Systems




Way Forward and Next Steps

U.S.ARMY

® Finalization of Tech Report

US Army Corps
of Engineersg
Engineering Research and

® Potential Future Research/Implementation

= Hands-on training data for new equipment to better train neural
networks / ML

= Expanding analysis to more components that match up to Tyndall
sensor list

= Adapt CERL BAS neural network to new Tyndall points as we start
acquiring USAF data

= Pilot study with other COTS solutions / vibration sensor technology
= Research inspection cost savings
= Develop flow diagram of sensor data usage

" Flagging components that require a physical inspection
" Trends which automatically create inspection points
. Trends which supplement SMS condition prediction

= Verification and Validation for methodology processes

Development Center

Operations and Maintenance Engineering Technology
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A Method Comparison of Algorithms for Predicting
Equipment Condition Ratings in the Enterprise
Sustainment Management System using Building
Automation System Data

A Case Study at Tyndall AFB and the Engineering Research and Development
Center, Version 1.0

Matthew E. Richards, Louis Bartels, PhD., Michael March 2023
Grussing, PhD., Trevor Betz, Joseph Wittrock, Sam Revised November 2023
Dulin and Robert Skudnig

Construction Engineering Research Lab-

DRAFT NOT APPROVED FOR PUBLIC RELEASE; distribution is limited to authors.
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Summary

U.S.ARMY

« Strategic — MDI
» Tactical — Reinforcement Learning
* QOperational — Automated Condition Assessment

? Sustainment Management Systems



Beyond Condition Assessment

THANK YOU

Please take a few
minutes to complete a
short survey about
this session. Your
feedback will help us
improve future
programming for
JETC.
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Beyond Condition Assessment. SMS for Strategic, Tactical, and
Operational Intelligence

 Buddy Bartels, louis.bartels@usace.army.mil

* Bob Skudnig, Robert.skudnig@usace.army.mil

» Joseph Wittrock, joseph.Wittrock@usace.army.mil

* Mike Grussing, michael.n.grussing@usace.army.mil
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